АНТРОПОЛОГИЯ

С. В. Иванов, Д. В. Гоппе, С. Н. К. Керимова, К. В. Жорняк

Антропологические корреляты межзрачкового расстояния: медицинские, физиогномические и психологические приложения

УДК: 572.087:611.842.1

На основе оригинальных регистров антропометрических (n=63), оптометрических (n=363), краниометрических (n=15), физиогномических (n=332), психометрических (n=63) и физиологических (n=63) параметров у мужчин и женщин инструментами вариационной статистики и корреляционного анализа установлены следующие закономерности. Показатель межзрачкового расстояния — pupillary distance (PD) — корреспондирует со стойкими динамическими и ментальными стереотипами, связан с индивидуальным профилем латерализации (киральной асимметрии). Эволюционный и секулярный тренд роста PD является проявлением неотении, ювенилизации или педоморфоза.

Ключевые слова: межзрачковое расстояние, антропометрия, краниометрия, физиогномика, индивидуальный профиль латерализации.

S. V. Ivanov, D. V. Goppe, S. N. K. Kerimova, K. V. Zhornyak. Anthropological correlates of pupillary distance: medical, physiognomic and psychological applications

Based on the original registers anthropometric (n=63), optometric (n=363), craniometric (n=15), physiognomic (n=332), psychometric

[©] Иванов С. В., Гоппе Д.В., С.Н.К. Керимова, Жорняк К. В., 2015

(n=63) and physiological (n=63) of parameters in men and women the tools of the analysis of variance and correlation analysis revealed the following patterns. Index pupillary distance (PD) corresponds with a persistent dynamic ski and mental stereotypes associated with the individual profile of lateralization (chiral asymmetry). Evolutionary and secular trend of growth of PD is a manifestation of neoteny, juvenile or pedomorphosis.

Keywords: pupillary distance, anthropometry, craniometry, physiognomy, an individual profile of lateralization.

Как известно, межзрачковое (центровочное) расстояние (МЗР, рис. 1), или pupillary (interpupillary) distance (PD), у взрослого человека варьирует в пределах 50–75 мм, максимально – 45–80 мм, у детей – до 40 мм [27]. Этот показатель используется в практике оптометрии и прикладной офтальмологии [1; 12; 16], в криминалистике [9] и других отраслях знания. В офтальмологической практике МЗР измеряется в миллиметрах. Измеряется не прямо, а косвенно – от края одной радужки до края другой (рис. 2), но не между зрачками. Поскольку диаметр зрачков постоянно варьирует.

Почти двукратный коридор вариаций нормального показателя МЗР человека — от 45 до 80 мм — ассоциируется с полярными стратами мира животных — хищниками и травоядными. Как и с дельфинами — вторично водными млекопитающими с максимально широко «расставленными» глазами. Угол локации глазных яблок у них почти 160°, что аналогично 6-недельному зародышу человека [32]. А это — табу на бинокулярное зрение, необходимое для оценки расстояний. Особенно — хищникам!

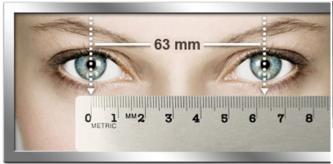


Рис. 1. Межзрачковое расстояние

Рис. 2. Измерение межзрачкового расстояния

Безусловно, угол локации глазных яблок в примере с хищниками и травоядными связан со стереотипами адаптивного поведения. Эта связь должна «работать» и у человека. В первом приближении поведенческие стереотипы и менталитет миролюбивого земледельца («травоядное») должны корреспондировать с широко расставленными глазами. А поведенческие стереотипы и менталитет агрессивного охотника («хищник») – с близко посаженными глазами.

В этой связи интересна гипотеза «Охотник против фермера» Тома Хартманна. Но не в связи с синдромом дефицита внимания и гиперактивности [21]. Как и опубликованные в *Nature* [33] генетические аргументы троякого происхождения европеоидов в контексте имбриндинга охотников-собирателей и земледельцев по итогам работы международной коллаборации ученых из 89 научных центров.

У 6-недельного зародыша человека, подобно рыбам, глазные бокалы расположены латерально. Угол локации глазных яблок, образованный условными оптическими осями глаз, пересекающимися в центре головы, в этом возрасте составляет 160°. Через неделю этот угол уменьшается до 120°, а к 10-й неделе эмбриогенеза он составляет уже 70°, при среднем показателе у взрослого человека в 60° [32]. Очевидно, угол локации глаз в 60° соотносится со средним МЗР примерно в 60 мм. Тогда как эмбриональный и далее – плодный (от 10-й недели до рождения) статус этого угла в 70° соотносится с МЗР в 70 мм и более у взрослого человека, причем взрослого «травоядного», т.е. миролюбивого фермера-земледельца с широко расставленными глазами!

Принципиально важно, что данное наблюдение — это свежий аргумент в пользу антропологической гипотезы, согласно которой в эволюции человека важную роль играет неотения, ювенилизация или педоморфоз [14, С. 98].

Безусловно, на исконные филэмбриогенетические детерминанты, реализующиеся пренатально в изначальной комфортной водной среде в унисон мелодике гравитационного императива, в постнатальном онтогенезе, уже в условиях неуютной газовой среды и солярного электромагнитного ментора, наслаиваются и интерферируют привычные нам ныне детерминанты внешней среды — «природные» и социальные [10; 11].

При этом на фоне очевидной возрастной изменчивости лица и целого организма человека своеобразной константой – от пубертата до смерти – остается показатель МЗР. Дефинитивный статус показателя МЗР у обоих полов формируется с окончанием роста черепа к пубертатному периоду, достоверно не изменяясь в старших возрастных группах [20; 27–29; 31; 34]. В этой связи еще более консервативной константой является диаметр роговицы (и радужной оболочки), достигающий дефинитивного статуса уже к 1-му году постнатальной жизни [6; 18].

Тем не менее именно в силу возрастной инвариантности на фоне двукратного коридора дефинитивных индивидуальных вариаций нормального показателя МЗР, иллюстрирующих генотипичность этого признака, страты коридора вариаций нормы МЗР должны быть каузально и статистически связаны с более пластичными антропологическими, краниологическими, физиогномическими, психосоциальными и прочими фенотипическими маркерами. Тестирование этой возможности и определило дизайн настоящего исследования.

Как видно из табл. 1, первая наша база данных включает результаты замеров МЗР, а также антропометрических, психометрических (модифицированный тест опросника Аннет [22–24]) и физиологических (аксилярная термометрия) параметров у 63 добровольцев (29 мужчин и 34 женщин в возрасте от 8 до 69 лет).

Материалы табл. 1 среди прочего подтверждают тривиальные постулаты, исходящие из примата соматомоторного критерия «рукости». Например, установлено преобладание показателя ширины ногтевой пластинки 1-го пальца кисти на ведущей руке (в 93,65 % – правой), как и достоверно более высокие цифры этого показателя у мужчин, по сравнению с женщинами. В нашем пилотном исследовании процент левшей оказался сопоставимым с литературными данными, которые варьируют от 2 до 25 % в зависимости от исторической эпохи и этнической принадлежности исследуемой популяции. В частности, среди англоязычного населения Австралии и Новой Зеландии с 1880 по 1969 гг. леворукость возросла с 2 до 13 % [25]. Привлечение корреляционного анализа к массиву сравниваемых показателей выявляет прогнозируемую прямую зависи-

мость между ростом испытуемого и МЗР, но в силу малой выборки зависимость статистически недостоверную.

Таблица 1 Медианный антропометрический фенотип добровольцев 1-й базы данных

. ,	T	1	1
Параметр (размерность)	Мужчи- ны M±S _x	Жен- щины M±S _x	Все слу- чаи М±S _x
Возраст (лет)	23,3	25,7	24,7
Межзрачковое расстояние (мм)	61,8±0,8	60,6±0,	61,5±0 ,7
Правша, левша или амбидекстр (% левшей)	8,8 %	3,4 %	6,35 %
Модифицированный тест Аннет (% левшей)	- 0,0 /0	2,9 %	1,6 %
ЛЛЛЛ)	_	2,7 /0	1,0 /0
Рост (см)	179,6	165,4	171,2
Средняя аксилярная температура за 3 замера слева	36,6°	36,4°	36,45°
Средняя аксилярная температура за 3 замера справа	36,55°	36,5°	36,5°
Ширина ногтевой пластинки 1-го пальца	17,0±1,1	14,2±0,	15,7±0
правой кисти (мм)	*	8*	,9
Ширина ногтевой пластинки 1-го пальца	16,45±1,	14,1±0,	15,3±0
левой кисти (мм)	0*	7*	,8
Ширина ногтевой пластинки 5-го пальца	9,9±0,8*	8,5±0,5	9,2±0,
правой кисти (мм)		*	6
Ширина ногтевой пластинки 5-го пальца	9,55±0,7	8,6±0,6	9,1±0,
левой кисти (мм)			6
Максиллярная межклыковая дистанция справа (мм)	30,2	28,2	29,7
Максиллярная межклыковая дистанция сле-	30,3	28,3	29,9
ва (мм)	23,2	20,5	
Мандибулярная межклыковая дистанция справа (мм)	23,4	22,1	22,9
Мандибулярная межклыковая дистанция слева (мм)	22,8	22,1	22,7
	(A) (A) (B)		•

^{*}различия показателя достоверны (P<0,05) между мужчинами и женщинами.

Однако есть и нетривиальные результаты. Удельный вес истинных левшей нашего пилотного исследования (1,6 %) аргументирует гипотезу В.А. Геодакяна (2005) о синергии зеркальной (D- и S-формы функций) и стереометрической асимметрии (цис- и транс-позиции) в эволюции триаксиальных форм организмов, включая человека [8]. Эти результаты достигаются при учете не только соматомоторного доминирования. В формуле индивидуального профиля латерализации должны быть учтены как минимум соматосенсорные (ведущий глаз), висцеромоторные (термоасимметрия), физиогномические, антропометрические и краниометрические переменные.

С другой стороны, критерий МЗР должен «заиграть» по факту стратификации выборки на полярные и промежуточные группы, нивелировав избыточные малоинформативные параметры программы исследования, как и результаты замеров у детей (табл. 2). Условно по этому критерию уместно выделить группу «хищников» с узко посаженными глазами (МЗР 45–54 мм) и «травоядных» с широко расставленными глазами (МЗР 66–75 мм). Лица с МЗР в промежуточном диапазоне 55–65 мм и в нашей выборке, и по данным литературы [27–29; 31] тотально преобладают.

Как следует из таблицы 2, несмотря на нерепрезентативные объемы выборки в обеих сравниваемых группах, тренды, намеченные материалами полного регистра (табл. 1), в полярных когортах «хищников» и «травоядных» проявляются более рельефно. В частности, в страте «хищников», как и предсказывает гипотеза В.А. Геодакяна [8], правокиральная термоасимметрия значимо выше (0,125°), чем у «травоядных» (0,05°).

Второй наш регистр (n=300) включает данные о МЗР, любезно предоставленные администрацией городских салонов оптики. Как следует из таблицы 3, оптометрические параметры нашей небольшой выборки сопоставимы не только с результатом профессиональных оптометристов, но и с весьма репрезентативными выборками зарубежных коллег.

Таблица 2 Медианный антропометрический фенотип добровольцев 1-й базы данных с учетом выделенных крайних страт по критерию M3P

по критерин	11101		
Параметр (размерность)	Страта «хищни- ков» (n=5)	Страта «траво- ядных» (n=13)	Все случаи М±S _x
Возраст (лет)	23,4	26,6	24,7
Межзрачковое расстояние (мм)	52,0	68,1	61,5±0,
Правша, левша или амбидекстр (% левшей)	0 %	0 %	6,35 %
Модифицированный тест Аннет (% левшей ЛЛЛЛ)	0 %	15,4 %	1,6 %
Рост (см)	165,8	176,8	171,2
Средняя аксилярная температура за 3 замера слева	36,5°	36,3°	36,45°
Средняя аксилярная температура за 3 замера справа	36,625°	36,35°	36,5°
Ширина ногтевой пластинки 1-го пальца правой кисти (мм)	13,2	17,1	15,7±0, 9
Ширина ногтевой пластинки 1-го пальца левой кисти (мм)	13,0	16,7	15,3±0, 8
Ширина ногтевой пластинки 5-го пальца правой кисти (мм)	8,0	10,1	9,2±0,6
Ширина ногтевой пластинки 5-го пальца левой кисти (мм)	7,8	9,9	9,1±0,6
Максиллярная межклыковая дистанция справа (мм)	29,0	32,15	29,7
Максиллярная межклыковая дистанция слева (мм)	29,2	32,4	29,9
Мандибулярная межклыковая дистанция справа (мм)	21,2	24,0	22,9
Мандибулярная межклыковая дистанция слева (мм)	22,0	23,8	22,7

Таблица 3 **Сравнительный анализ МЗР в различных популяциях**

Источник данных	Объем и эт- нические осо- бенности вы- борки	Среднее МЗР (мм)	Среднее МЗР у мужчин (мм)	Среднее МЗР у женщин (мм)
Иванов С.В. и со- авт., 2015	63 (европеои- ды)	61,5±0,7	61,8±0,8	60,6±0,7
Салоны оптики г. Сыктывкара	300 (европео- иды)	62,8±0,3	63,3±0,4	61,6±0,4
Clauser e.a., 1988 [26]; Dodgson, 2004 [27]	3976 (евро- пеоиды, нег- роиды, монго- лоиды)	63,36	64,67	62,31
Clauser e.a., 1988 [26]; Dodgson, 2004 [27]	2302 («бе- лые»)	61,99		
Clauser e.a., 1988 [26]	1376 (негры)	65,65		
Clauser e.a., 1988 [26]	125 (испанцы)	63,54		
Clauser e.a., 1988 [26]	58 (исландцы)	63,17		
Clauser e.a., 1988 [26]	26 (индейцы)	65,12		
Evereklioğlu e.a., 1999 [28]	3448 («белые»)	61,7	62,6	60,8

Очевидно, что МЗР должен соотноситься с постнатальной изменчивостью краниофациальной области черепа, которая, по единодушному мнению специалистов в области краниологии [2–4; 7], является наиболее пластичной областью черепа. Особенно вариабельны в постнатальном онтогенезе именно латеральные размеры краниофациальной области [5; 17]. Причем пластичность эта зиждется на происхождении костей этой области из уникального плюрипотентного эмбрионального источника – эктомезенхимы [32]. В этой связи третья наша база данных включала результаты измерений экспонатов краниометрической коллекции кафедры (15 чере-

пов, в т.ч. 8 мужских и 7 женских). Из большого перечня традиционной краниологической программы [2; 5] мы выбрали те показатели, которые, во-первых, наиболее адекватно соотносятся с нашей антропометрической и физиогномической программами исследования, во-вторых, прямо или косвенно аффилированы с МЗР (рис. 3).

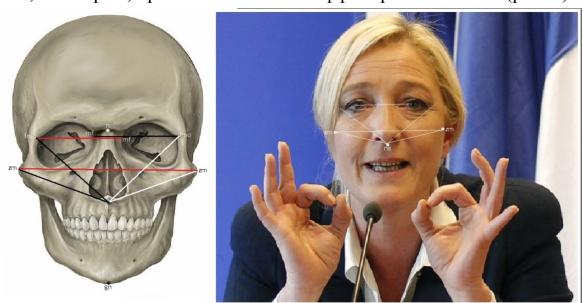


Рис. 3. Тестируемые краниометрические и физиогномические размеры:

zm – зиго-максилляре (наиболее выступающие латерально точки скуловых дуг; ns – назоспинале (точка корня передней носовой ости);
mf – максилло-фронтале (точка пересечения внутреннего края орбиты с лобно-челюстным швом); fmo – фронто-маляре орбитале (точка на наружном крае орбиты в месте пересечения его скуло-лобным швом)

Результаты краниологических исследований представлены в табл. 4. Как можно предположить, именно показатель средней орбитальной межцентральной дистанции является краниометрическим эквивалентом МЗР живого человека. Этот вывод может быть использован как в практике антропологической реконструкции лица по фрагментам черепа, так и в контексте историко-культурологических трактовок палеоантропологических артефактов.

Таблица 4 Медианные краниометрические характеристики лицевого черепа

	Муж-	Жен	Bce
Параметр (размерность)	чины	щи-	слу-
	IIIIDI	ны	чаи
Орбитальная межцентральная дистанция (mf-	61,4	56,4	59,1
fmo) справа (мм)			
Орбитальная межцентральная дистанция (mf-	60,1	55,6	58,0
fmo) слева (мм)			
Орбитальная межцентральная дистанция (mf-	60,8	56,1	58,5
fmo) средняя (мм)			
Максиллярная межклыковая дистанция справа	34,0	30,8	32,5
(MM)			
Максиллярная межклыковая дистанция слева	32,7	30,0	31,5
(MM)			
Скуловой диаметр (zm-zm) – бизигоматик (мм)	117,3	116,1	117,1
Назоспинале-зигион (ns-zm) справа (мм)	53,2	56,1	54,2
Назоспинале-зигион (ns-zm) слева (мм)	63,1	60,3	62,2

Максиллярная межклыковая дистанция справа и слева оказались практически идентичным таковым, измеренным на живых людях, но с более существенным правокиральным трендом (табл. 1). Это может быть обусловлено правосторонним предпочтением акта жевания людей данной выборки. Показатель назоспинале-зигион у мужчин и женщин оказался значимо выше слева, что свидетельствует о левосторонней асимметрии развития мягких тканей лица. Это наблюдение более рельефно и наглядно иллюстрируется данными физиогномической части данного проекта.

В грандиозном по объему выборки (антропометрическая база данных армии США за 1945–2012 гг.) и методическому арсеналу (секвернирование тысяч геномов в рамках «Проекта 1000 Genome») исследовании американских коллег [36] установлено, что, в отличие от других животных, у человека область лица в границах треугольника глаза—нос—рот является наиболее вариативной, причем вариативность участков генома, отвечающих за черты лица, также оказалась беспрецедентно высокой. Такая же картина наблюдалась в случае с геномами денисовцев и неандертальцев. Это говорит о

том, что высокая вариативность черт лица сформировалась задолго до появления Человека разумного. Что связывается авторами с уникальной ролью черт лица как средства коммуникации в социуме.

Таблица 5 **Сравнительный анализ физиогномического регистра**

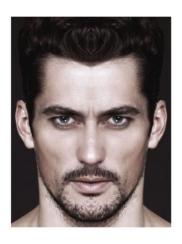
Группы сравнения	Объем вы- борки (слу- чаев)	% от исход- ной вы- борки	Коэффи- циент фа- циальной диссим- метрии и дисперсия (%)
Лица с правосторонней асимметрией общей выборки	119	54,1	8,0 (2–17)
Лица с левосторонней асимметрией общей выборки	84	38,2	6,9 (2–18)
Симметричные лица общей выборки	17	7,7	0
Лица левшей с правосторонней асим- метрией	83	81,4	7,5 (2–17)
Лица левшей с левосторонней асимметрией	14	13,7	6,7 (2–17)
Симметричные лица выборки левшей	5	4,9	0
Лица с синдромом «заячья губа» с правосторонней асимметрией	6	-	7,2 (4–12)
Лица с синдромом «заячья губа» с лево- сторонней асимметрией	4	-	6,5 (5–8)

Физиогномическая асимметрия — давно известный факт, но до настоящего времени этот фактор всерьез не исследован, как не использован он и в качестве инструмента исследования. Миновала докомпьютерная эпоха, когда при подготовке монографии [13] для иллюстрации фациальной асимметрии мы кропотливо склеивали половинки фото симпатичной девушки — препаратора нашей кафедры. Сегодня возможность «склеивать» правые и левые половинки фото способны рутинные инструменты фотошопа и других графических редакторов, встроенные в операционную среду бытового компьютера.

Чем мы и воспользовались, формируя 4-ю базу данных (n=332), включающую фотографии строго анфас добровольцев из 1-го регистра, случайных и медийных лиц, выложенных в Internet (табл. 5). Регистр стратифицирован на лиц общей выборки (n=220), левшей из медийной выборки (голливудские актеры, гитаристы, теннисисты, боксеры и т.д.) и 1-го регистра (n=102) и лиц с синдромом «заячья губа» (n=10).

Все 3 группы лиц ранжировались на фациальных «левшей», «правшей» и «амбидекстров» по критерию преобладания скулового диаметра (zm-zm: см. рис. 3) фотомонтажа двух правых или двух левых половин исходного фото анфас (рис. 4–7). В этой связи вычислялся коэффициент фациальной диссимметрии (КФД) как процентная разница скулового диаметра фотомонтажа двух правых и двух левых половин исходного фото.

1. Фотомонтаж двух левых половин исходного фото



2. Исходное фото

3. Фотомонтаж двух правых половин исходного фото

Рис. 4. Левша. Правосторонняя асимметрия 6 %

1. Фотомонтаж двух левых половин исходного фото

2. Исходное фото

3. Фотомонтаж двух правых половин исходного фото

Рис. 5. Общая выборка. Левосторонняя асимметрия 9 %

1. Фотомонтаж двух левых половин исходного фото

2. Исходное фото

3. Фотомонтаж двух правых половин исходного фото

Рис. 6. Двусторонняя «заячья губа». Левосторонняя асимметрия 7 %

1. Фотомонтаж двух левых половин исходного фото

2. Исходное фото

3. Фотомонтаж двух правых половин исходного фото

Рис. 7. Двусторонняя «заячья губа». Правосторонняя асимметрия 10 %

Как следует из материалов табл. 5, по критерию КФД из трех изученных групп сравнения только в страте соматомоторных «левшей» шестикратно преобладают лица с правосторонней фациальной асимметрией. В этой же страте ощутимо меньше фациальных «амбидекстров» (4,9 % против 7,7 % общей выборки). В двух других группах сравнения есть паритет репрезентативности. Во всех стратах медианный показатель КФД практически одинаков (6,5–8 %), как и его дисперсия. «Дефицит» симметричных лиц в когорте голливудских актеров, представляющих основной массив нашей выборки «официальных левшей» [35], вполне объясним кастингом, так как привлекательные лица более асимметричны.

В этом контексте принципиально открытие гена LRRTM1 «леворукости», локализованного у человека в хромосоме 2р12 [30]. Кратное преобладание в страте соматомоторных «левшей» лиц с правосторонней фациальной асимметрией объясняется тривиальным для анатомов «тройным» перекрестом соматомоторных путей пирамидной системы. Если общеизвестная перекрестная структурно-функциональная асимметрия верхних и нижних конечностей диктуется альтернативностью переднего и латерального кортикоспинальных трактов пирамидной системы, то противоположное

«рукости» структурно-функциональное доминирование в области головы связано с перекрестом третьего звена пирамидной системы – корково-ядерного тракта, иннервирующего жевательные и мимические мышцы. А именно мышцы «ваяют» лицевой скелет наряду со стоматологическим фактором.

Как видно из материалов табл. 5, в пилотной группе лиц с синдромом «заячья губа» по критерию КФД нет значимых различий с «нормальными» выборками. Более того, даже при сочетании этого порока развития с синдромом «волчья пасть» (рис. 8) — не регистрируется эксцессов КФД. Тестирование весьма распространенного косметического дефекта — риносколиоза [15; 19] — искривления носовой перегородки, как и хронического одностороннего синусита (воспаление придаточных пазух носа), также не выявило значимых отличий от контрольных групп. Однако исследование случаев с этими и другими параклиническими фациальными дефектами, не вошедшими в обсуждаемые базы данных, позволило установить важные для криминалистики и физиогномики факты. В частности, сформулировано правило «носового флюгера», в соответствии с которым кончик носа отклоняется в сторону доминирующей половины лица, т.е. в сторону, противоположную изгибу носовой перегородки.

1. Фотомонтаж двух левых половин исходного фото

2. Исходное фото

3. Фотомонтаж двух правых половин исходного фото

Рис. 8. Сочетанный порок развития – «заячья губа» и «волчья пасть». Левосторонняя асимметрия 3 %

Табл. 6 содержит результаты гендерной разбивки изученных страт. Как видно, фактор пола значимо не влияет на симметрию лица. Однако, как прослеживается в предварительных итогах второй серии нашего проекта, КФД значимо связан с МЗР, как и с веерными размерами лица (рис. 3). Учитывая уже отмеченную выше константность — независимость размеров роговицы и радужки (~11 мм) от возраста, истинные размеры лица на фото воссоздаются рутинным фотошопом путем увеличения изображения с ориентиром на «маячок» — диаметр радужки.

Таблица 6 **Гендерный анализ физиогномического регистра**

Группы сравнения	Муж- чины: объем вы- борки (КФД)	Жен- щины: объем выбор- ки (КФД)	Общая выбор- ка: объем (КФД)
Лица с правосторонней асимметрией	56	63	119
общей выборки	(8,2 %)	(7,9 %)	(8,0 %)
Лица с левосторонней асимметрией об-	42	42	84
щей выборки	(7,4 %)	(6,5 %)	(6,9 %)
Лица левшей с правосторонней асим-	54	29	83
метрией	(7,6 %)	(7,3 %)	(7,5 %)
Лица левшей с левосторонней асиммет-	9	5	14
рией	(6,0 %)	(8,0 %)	(6,7 %)

Таким образом, показатель МЗР корреспондирует с устойчивыми динамическими и ментальными стереотипами с условными обозначениями полярных страт — «охотник» и «земледелец». МЗР протежирует индивидуальный профиль латерализации и КФД. Эволюционный и секулярный тренд роста МЗР является проявлением неотении, ювенилизации или педоморфоза. А побочные результаты реализации данного проекта открывают новые горизонты его развития. Абрис целостной картины очерчен. Впереди — прорисовка, ретушь и задний план.

- 1. Аветисов Э.С., Розенблюм Ю.З. Методические рекомендации по подбору корригирующих очков / МНИИ ГБ им. Гельмгольца; утв. МЗ СССР. М., 1973.
- 2. Алексеев В.П., Дебец Г.Ф. Краниометрия. Методика антропологических исследований. М.: Наука, 1964.
- 3. Бахарева Н.С. Особенности асимметрии линейных размеров лицевых черепов жителей юга России // Фундаментальные исследования. 2012. № 8 (2). С. 279–284.
- 4. Бахолдина В.Ю. Информационная значимость и структура изменчивости признаков краниофациальной системы человека: автореф. дис. ... докт. биол. наук. М.: МГУ, 2008.
 - 5. Бунак В.В. Антропометрия: практический курс. М., 1941.
 - 6. Вит В.В. Строение зрительной системы. М.: Астропринт, 2003.
- 7. Гайворонский И.В., Дубовик Е.И., Крайник И.В. Асимметрия лицевых черепов // Морфология. 2009. Т. 135, № 2. С. 76–79.
- 8. Геодакян В.А. Эволюционные теории асимметризации организмов, мозга и тела // Успехи физиологических наук. 2005. Т. 36. № 1. С. 24–53.
- 9. Зинин А.М., Кирсанова Л.З. Криминалистическая фотопортретная экспертиза: Учебное пособие / под ред. В.А. Снеткова, З.И. Кирсанова. М.: ВНКЦ МВД СССР, 1991.
- 10. Иванов С.В. Pineal gland, moon and anchor model trigger mechanism of gravity pendulum biological clock // Вестник РУДН. Сер. Медицина. 2012. № 7. С. 112–113.
- 11. Иванов С.В. Гравитационные корреляты пинеальной функции // Световой режим, старение и рак : сб. науч. тр. 2 Рос. симпозиума с междунар. участием. Петрозаводск: Петропресс, 2013.
- 12. Кузнецов Ю.В. Назначение расстояния между оптическими центрами линз в очках. От правила 2 мм к разнице 4...7 мм. Призматическое действие очков. Допуски на межцентровое расстояние. Недостатки пупилометров. СПб.: Веко, 2009.
- 13. Куприянов В.В., Стовичек Г.В. Лицо человека: анатомия, мимика. М.: Медицина, 1988.
- 14. Марков А.В. Эволюция человек : в 2 кн. Кн. 2: Обезьяны, нейроны и душа. М.: Астрель: CORPUS, 2011.
- 15. Оганесян С.С. Хирургия риносколиоза : автореф. дис. ... докт. мед. наук. СПб., 2008.

- 16. Розенблюм Ю.З. Оптометрия. 2-е изд., испр. СПб.: Гиппократ. 1996.
- 17. Сперанский В.С. Основы медицинской краниологии. М.: Медицина, 1988.
- 18. Филиппенко В.И., Старчак М.И. Заболевания и повреждения роговицы. Киев: Здоров'я, 1987.
- 19. Храппо Н.С., Тарасова Н.В. Нос в системе целого черепа. Самара: СамГМУ, 1999.
- 20. Чупров А.Д., Кудрявцева Ю.В. Анатомия и физиология органа зрения : учеб. пособие для студентов медицинских вузов / сост. А.Д. Чупров, Ю.В. Кудрявцева; под общ. ред. А.Д. Чупрова. Киров: КГМА, 2007.
- 21. Arcos-Burgos M., Acosta M.T. Tuning major gene variants conditioning human behavior: The anachronism of ADHD// Current Opinion in Genetics & Development. 2007. Vol. 17, № 3. P. 234–238.
- 22. Annett M. A classification of hand preference by association analysis// The British Journal of Psychology. 1970. Vol. 61, № 3. P. 303-321.
- 23. Annett M. The distribution of manual asymmetry//The British Journal of Psychology. 1972. Vol. 63, № 3. P. 343 -358.
- 24. Annett M. A coordination of hand preference and skill replicated // The British Journal of Psychology. 1976. Vol. 67, № 4. P. 587- 592.
- 25. Brackenbridge C.J. Secular Variation in Handedness over ninety years // Neuropsychologia. 1981. Vol. 19. № 8. P. 459-462.
- 26. Clauser C.E., Tebbetts I.O., Bradtmiller B., McConville J.T., Gordon C.C. Measurer's Handbook: US Army Anthropometric Survey 1987-1988, Technical Report NATICK/TR-88/043. ANSUR database, 1988.
- 27. Dodgson N.A. Variation and extrema of human interpupillary distance// Proc. SPI E. 2004. Vol. 5291, № 36. P. 36-46.
- 28. Evereklioğlu C., Doğanay S., Er H., Gündüz A. Distant and near interpupillary distance in 3448 male and female subjects: final results// Turgut Özal Tıp Merkezi Dergisi. 1999. Vol. 6, № 2. P. 84–91.
- 29. Fledelius H.C., Stubgaard M. Changes in eye position during growth and adult life as based on exophthalmometry, interpupillary distance and orbital distance measurements// Acta Ophthalmol. 1986. Vol. 64. P. 481–486.
- 30. Francks C., Maegawa S., Laure'n J., Abrahams D.S. e.a. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia //Molecular Psychiatry. 2007. Vol. 12. P. 1129–1139.

- 31. Gupta V.P., Sodhi P.K., Pandey R.M. Normal values for inner intercanthal, interpupillary, and outer intercanthal distances in the Indian population// Int. J. Clin. Pract. 2003. Vol. 57, № 1. P. 25–29.
- 32. Карлсон Б. Основы эмбриологии по Пэттену: в 2 т. М.: Мир, 1983. Т. 2.
- 33. Lazaridis I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans // Nature. 2014. V. 513. P. 409–413.
- 34. Pryor H.B. Objective measurements of interpupillary distance// Pediatrics, 1969. Vol. 44. P. 973–977.
- 35. Райт Э. Великие левши в истории мира / пер. с англ. А.А. Батракова. М.: Ниола-Пресс, 2010.
- 36. Sheehan M.J., Nachman M.W. Morphological and population genomic evidence that human faces have evolved to signal individual identity// Nature Communications. 2014. Vol. 5. doi:10.1038/ncomms5800